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Abstract

The classical single choice prophet inequality problem has a gambler observing a sequence of rewards
X1, X2, .., Xn, each of which is drawn from an associated probability distribution Xi Di. At each step,
the gambler must irrevocably decide whether to accept reward Xi (and stop) or reject it and move on
to see reward Xi+1. The objective of the gambler is to obtain a reward that is, in expectation, within a
constant (or reasonably small) factor of the reward obtained by an optimal offline player (i.e., a prophet).
In the classical setting, the gambler has complete knowledge of the underlying distributions, and is known
to have a 1/2-competitive algorithm. Similar results exist for more general settings, where the gambler
has to select a set of rewards, subject to some conditions (for eg: selecting a set of rewards of size k).
We study a new class of prophet inequalities, which do not assume that the gambler has full knowledge
of the distributions. We look at the single sample setting, where the gambler only gets to look at one
sample from each distribution before starting the sequence. In this setting, we see results from Azar et
al. [AKW14] and Rubinstein et al. [RWW20], that prove competitive ratios in the single sample setting
that are comparable to the corresponding best known competitive ratios for the classical version of the
same problems. We also study the single choice problem when all rewards are independently drawn from
a single, unknown distribution (Correa et al. [CDFS19]).

1 Introduction

In this report, we study a variant of the prophet inequality problem. In the classical single choice prophet
inequality problem, n distributions D1, D2 · · ·Dn are made known in advance to a gambler. Then, from i = 1
to n, a random variable Vi is drawn independently from Di in each step and presented to the gambler. The
gambler must decide irrevocably whether to accept Vi and stop the process or reject Vi and continue to the
next step. The objective of the gambler is to come up with an algorithm that maximizes the expected reward
(i.e., the value he accepts) obtained in this process, typically as a factor of the expected reward obtained by
an offline player, known as the prophet, who sees all the draws before making her choice. This factor can
be understood as an online competitive ratio for the gambler against an optimal offline adversary,i.e., the
prophet.

The seminal result of Krengel,Sucheston and Garling [KS+77] showed the existence of a stopping rule
for the single choice prophet inequality problem that guarantees the gambler an expected reward equal to
at least half the expected reward of the prophet. This competitive ratio of 1/2 can be seen to be optimal
through a simple example with two distributions [KS78].Sameul-Cahn [SC+84] showed how to obtain the
same competitive ratio of 1/2 by using a threshold based stopping rule,i.e., the gambler stops and accepts
any value greater than a threshold τ , that is fixed before seeing the draws from the distributions.

The secretary problem is a closely related, but incomparable, online optimization problem. We are given
n non-negative numbers, in uniformly random order (every permutation of the numbers is equally likely),
and once again, decisions must be made irrevocably whether to stop and accept any number or continue to
the next number. The objective of the online player is to come up with a stopping rule to maximize the
probability of selecting the maximum element in the sequence. The single choice secretary problem admits an
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elegant solution, in which the first 1/e fraction of the items are discarded and the first number that exceeds
the maximum of the first 1/e fraction of the items is accepted. This solution guarantees a probability of 1/e
of accepting the maximum element and is known to be the optimal solution to the secretary problem [F+89].

Recent work on prophet inequalities has focused on more general versions of the problem, in which the
gambler’s (and prophet’s) objective is to select some maximum weight subset of the presented items, subject
to some set system constraints, for example, selecting a subset of k out of the n items [Ala14], selecting
an independent set of a matroid [KW12], selecting a set in a generic downward closed set system [Rub16],
selecting a matching in a bipartite graph with online edge arrivals [GW19]. Similar generalizations exist for
the secretary problem( [KP09], [FSZ14], [DP08], [JSZ13]).

The variant of the prophet inequality problem we are interested in relaxes the assumption that the
gambler has full knowledge of the distributions {Di}i∈[n] from which the values are drawn. In this version
of this problem, the only information that the gambler is assumed to have is access to a limited number
of samples (all draws being independent) from each distribution. This problem was introduced by Azar et
al. [AKW14], who gave the first results for a variety of problems (Single choice, k-choice Graphic Matroids,
Laminar Matroids, Transerversal Matroids, Bipartite Matching) in this setting. A subset of these results
are based upon a novel connection to a class of algorithms for the corresponding secretary problem 3, while
others are based upon purpose built algorithms for those problems. Rubinstein et al. [RWW20] followed up
by showing a 1/2-competitive algorithm 2 for the single choice problem where the gambler has access only to
a single sample from each distribution, improving upon the 1/4-competitive algorithm from [AKW14] and
closing the gap to the hardness bound of 1/2. For the more general k-Choice Prophet Inequality problem,

Azar et al. [AKW14] give a 1−O
(

1√
k

)
-competitive algorithm called the “Rehearsal Algorithm”.

Another problem of interest for us is the single choice prophet inequality with identical distributions,
known as the IID prophet inequality problem (IID standing, as is usual, for independent and identically
distributed). The full information version of this problem has been well studied in many works, and is known
to have an essentially optimal algorithm with competitive ratio 0.745 due to Correa et al. [CFH+17], matching
an upper bound due to an impossibiliity result of Hill and Kertz [HK+82]. Correa et al. [CDFS19] considered
a limited information of this problem where the gambler has no information at all about the distribution
before the sequence begins. Observe that when all the values are drawn from the same distribution, any
permutation of the observed values is equally likely, and hence the gambler can use the optimal algorithm
for the secretary problem to obtain a competitive ratio of 1/e. Surprisingly, Correa et al. [CDFS19] show
that this algorithm is essentially optimal. Their result is based upon showing that for every algorithm,
there is an infinite set K ⊂ N such that when V1, V2 · · ·Vi are supported on K, the decision to stop at
Vi when Vi > maxj∈[i−1] Vj is independent of V1, V2 · · ·Vi (Lemma 1). This property, referred to as value-
obliviousness, is established by employing the infinite version of Ramsay’s Theorem [Ram30], and can then be
used to connect the guarantees of algorithms for this problem to guarantees for algorithms for the secretary
problem (in a reduction of sorts). Additionally, the same work also studies an intermediate version of the
problem where the gambler gets to see a few samples from this unknown distribution. While the same
hardness result is shown to hold for o(n) samples, they show an improved ratio of 1 − 1/e ≈ 0.632 with
n − 1 samples and that O(n2) suffice to get arbitrarily close to the upper bound of 0.745. Rubinstein
et al. [RWW20] further strengthened this result by showing that the gambler can get arbitrarily close to
0.745-competitive with O(n) samples.

We present and analyze a cross section of results from the three papers [AKW14], [RWW20] and [CDFS19].

1.1 Further Related Work

There is a rich vein of connections between prophet inequalities and mechanism design established by the
work of Hajiaghayi et al. [HKS07] and Chawla et al. [CHMS10]. This connection is inspired by the problem
of picking a set of buyers in online fashion based on some prior information about their valuations. Many of
the results referred to in this report translate into posted price mechanisms in the corresponding mechanism
design problem environments.

The work of Azar et al. [AKW14] was in part inspired by results in the same flavor in mechanism
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design( [DRY15] and [HR09]), that explored revenue maximization based on limited information about
buyer’s priors.

1.2 Summary of Results

We tabulate the results for a collection of prophet problems under different set system constraints (which we
refer to as the environment). In Table 1, we compare the best known algorithms, under full information as
well as limited information, as well as hardness results (i.e., upper bounds on the competitive ratios). Note
that upper bounds for the full information setting are also upper bounds for the limited information setting.
The number of samples refers to the number of sets of samples, where each set consists of one sample from
each distribution.

Environment Full Information
Lower Bounds

Limited
Information Lower

Bounds

Upper Bounds

Single Choice 1/2-competitive
[KS+77]

1/2-competitive
[RWW20]

1/2 ( Full Infor-
mation) [KS78]

k-Choice
(

1− 1√
k+3

)
-

competitive [Ala14]

1−O
(

1√
k

)
-

competitive
[AKW14]

(
1 + 1√

512k

)−1
(full information)

[HKS07]
Bipartite
Matching on
(V,E)

1/3-competitive
[GW19]

1
6.75 (min{|E|, d2}-
samples where d is

max degree)
[AKW14]

1/2.25 (full
information)

[GW19]

Matroid
Independent Set

1/2-competitive
[KW12]

O(log log( rank ))-
competitive

(combining the
result of [FSZ14]
and [AKW14])

1/2 (full
information)

[KW12]

IID Prophet 0.745-competitive
[CFH+17]

1/e (no samples) ;
1− 1/e (n-1

samples)
[CDFS19] ;

0.745− ε (Oε(n)
samples)
[RWW20]

0.745 (full
information)

[HK+82] ; 1/e+ δ
(o(n) samples)

[CDFS19]

Table 1: Comparison of Results Across Different Environments

1.3 Outline of Report

Single Choice: In Section 3, we contrast one of the simplest algorithms for the full information single choice
prophet inequality problem (from Kleinberg et al. [KW12]) with the algorithm of Rubinstein et al. [RWW20]
for the single sample version of the same problem.

Connections between Secretary and Prophet Problem:In Section 4, we study the result of Azar
et al. [AKW14] that show how to utilize a certain class of algorithms, called order-oblivious algorithms, for
the secretary problem to construct algorithms with the same competitive ratio for the equivalent version
(same environment) of the single sample prophet inequality problem.

Bipartite Matchings: In Section 5, we study the algorithm of Azar et al. [AKW14] that ensures
a competitive ratio of 1/6.75 for the problem of finding a bipartite matching with O(|E|) samples. This
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algorithm illuminates how to exploit the availability of multiple samples to establish useful independence
properties between certain events. Of interest is also the setting of asymmetric thresholds for different edges in
a combinatorial environment, with similarities to techniques used in mechanism design for multi-dimensional
sequential posted price environments [CHMS10].

IID Prophet Inequalities: In Section 6, we study the results of Correa et al. [CDFS19] about the
limited information version of the IID Prophet Inequality problem. The main result we study is the hardness
result presented in Section 6.2, which shows that the gambler cannot do better than a competitive ratio of
1/e+ δ for the unknown IID prophet inequality problem. We also briefly touch upon the algorithmic results
that show how to beat this lower bound and close the gap to the upper bound of 0.745 with access to θ(n)
samples.

2 Notation and Preliminaries

2.1 Online Environment

Given an environment I = {U,J } where U is a universe set of indices U = [n] and J is a set of subsets of
U , the online selection problem takes as input an ordered sequence of positive real numbers, referred to as
values, V = (v1, v2, · · · vn) with each vi being revealed in a single step. As each element vi is revealed, the
algorithm A must irrevocably decide whether or not to include vi in a set A of accepted elements, subject
to the constraint that A ⊂ J throughout the process. Without loss of generality, we can assume that J
is a downwards closed set system. Throughout the report, we use capitalization (Vi) to refer to a random
variable and lower case (vi) to refer to the realization of the random variable (Vi).

2.2 Prophet Inequalities

The prophet inequality problem is a special case of the online selection problem, where each value Vi is drawn
independently from some distribution Di. All these distributions are assumed to exclusively be supported
on non-negative numbers. Let D be the product distribution D1 ×D2 · · ·Dn. We can alternatively consider
v ∼ D as the input. In the classical version of the problem, the offline player, referred to as the gambler,
is completely aware of each distribution Di, but has no control over the order in which the values are
presented. The objective is for the algorithm to pick a set whose value is competitive, in expectation, with
respect to the optimal set picked by an offline adversary, the eponymous prophet. In particular, let OPT(V )
represent maxJ∈J

∑
i∈J Vi. Then, we say that algorithm A selecting set A(V ) has a prophet inequality with

competitive ratio α if:

Ev∼D[
∑

i∈A(V )

Vi] ≥ α.Ev∼D[OPT(V )]

We refer to
∑
i∈A(v) vi as the reward obtained by the algorithm.

Implicitly, we also allow the expectation on the left hand side to be taken over random choices made by
the algorithm A as well as the randomness in the draws from the distribution.

Let Vmax represent the random variable equal to the max of {Vi ∼ Di}. The expected reward of the
prophet is E[Vmax] for the single choice prophet inequality.

Limited Information Prophet Inequality Problems: While the classical prophet inequalities prob-
lem assumes that the gambler has full knowledge of the distributions, the limited information version of these
problems gives the algorithm l independent draws from each distribution as the only information about them
before the sequence begins. When l = 1, the problem is called the single sample prophet inequality problem.
These samples are indexed by Sij with realizations sij where the upper index is over the sample set, and the
lower index over the element in the universe set that it corresponds to. The upper index is dropped when it
is clear from context.
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Note. For our convenience, we can assume without loss of generality that all samples and values are distinct.
To justify this, we associate an independent draw from Uniform(0, 1) for each draw and use this value (distinct
with probability one) to break ties.

2.3 The Secretary Problem

The secretary problem is also a special case of the online selection problem, where the values v1, v2, · · · vn
are shown in uniformly random order. Formally, n underlying values {vi}i∈[n] are permuted uniformly at
random and shown in a sequence vi1 , vi2 · · · vin . The objective of the secretary problem is to come up with an
algorithm that maximizes the probability of picking the optimal set in J . The worst case (over all sequences
of numbers) probability associated with an algorithm is referred to as its competitive ratio α.

Pr[As selects OPT(v)] ≥ α

Again, we allow this probability to be over both the randomness in the order of the elements as well as
random choices of the algorithm.

Observe that maximizing the probability of choosing a maximum value set (uniqueness is WLOG) also
implies a competitive bound when taking the ratio of the expected value of the set chosen by the algorithm
and the expected value of the maximum value feasible set.

In the most basic version of the secretary problem, the single choice problem, we wish to maximize the
probability of picking the maximum element in the sequence.

3 A 1/2-Competitive Algorithm for the Single Sample Single Choice
Problem

The single sample single choice prophet inequality problem is the problem of selecting a single element (where
J consists of all singletons sets and the empty set) where the gambler is only given access to a single sample
drawn independently (of the value draws) from each distribution. The result of Rubinstein et al. [RWW20]
show that a simple threshold based algorithm gives a prophet inequality with competitive ratio 1/2.

In this section, we look at upper bounds for the competitive ratio of any algorithm for this problem,
and then contrast a simple pre-existing algorithms for the full information version of the problem and the
algorithm of [RWW20]. Note that the Single Sample problem is weakly harder than the full information
version and any algorithm for this setting automatically translates into an algorithm for the full information
version.

3.1 Upper Bound for the Single Choice Prophet Inequality

First, we look at a simple instance to see that 1/2 is the best possible ratio that can be guaranteed. Let
D1 be a distribution that puts its entire probability mass on 1 and let D2 put probability mass ε on 1

ε and
the rest on 0 where ε > 0 is a very small positive real number, i.e., ε << 1. Note that E[v1] = E[v2] = 1.
We assume that the algorithm has full knowledge of the distributions, making this an upper bound instance
for the traditional single choice prophet inequality problem as well. Note that the algorithm gets no new
information on observing v1 ∼ D1. Therefore, we can restrict our analysis to two classes of algorithms - those
that always accept the first value, and those that never accept the first value (and presumably accept the
second value, since it is always no worse than not accepting the second value). Observe that both algorithms
have an expected reward of 1. In contrast, we show that the prophet has an expected reward of 2− ε. We
can look at the following two events that partition the probability space, the first event is v2 = 1

ε and the
second event is v2 = 0. The first event occurs with probability ε and gives reward 1

ε to the prophet while
the second event occurs with probability 1− ε and gives reward 1 to the prophet, thus giving us the desired
bound.
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3.2 A Simple Algorithm for the Full Information Version [KW12]

Algorithm AKW [KW12]: Set threshold τ = E[Vmax] and accept the first value Vi greater than
the threshold.

Theorem 1. AKW is a 1/2-competitive algorithm for the single choice prophet inequality problem.

To see the proof of the algorithm. We split the reward of the algorithm RA into two parts RA = RT +RE .
For the first part RT , note that any value picked by the algorithm is at least as large as the threshold, we
set RT = min{RA, τ}. The second part is the “excess”, defined as RE = max{RA − τ, 0}. Note that
E[RA] = E[RT ] + E[RE ]. Let F be the event that the algorithm accepts any of the observed values in the
sequence and let F be its complementary event. Clearly, E[RT ] = τ.Pr[F ]. Since this is a single choice
problem, the algorithm stops when it accepts a value. Conditional upon the algorithm reaching a value Vi,
this value contributes E[max{Vi − τ, 0}] towards the quantity E[RE ] (we are implicitly breaking up E[RE ]
into the expected contribution from each value in the sequence using the linearity of expectation). Thus, we
have:

E[RE ] =
∑
i∈[n]

E[max{Vi − τ, 0}] Pr[Vi is reached by AKW ]

Let Fi be the event that value Vi is reached by the algorithm AKW . Note that all events {Fi}i∈[n] happen

if event F occurs. Thus, we get the bound:

E[RE ] ≥
∑
i∈[n]

E[max{Vi − τ, 0}].Pr[F ]

≥ E[max
i∈[n]

Vi − τ ].Pr[F ]

= τ.Pr[F ]

Thus, the expected reward of the algorithm is at least τ(Pr[F ] + Pr[F ]) = τ = E[Xmax]/2. This gives the
desired competitive ratio of 1/2.

3.3 Algorithm of Rubinstein et al. [RWW20]

Let any algorithm observe samples Si ∼ Di for all i before starting the sequence for the online selection
problem.

Algorithm Asssc [RWW20] : Set threshold τ = maxi Si and only accepts the first value Vi
that is greater than the threshold.

Theorem 2 ([RWW20]). The algorithm Asssc has a competitive ratio of 1/2.

The key observation made in [RWW20] is that the samples and values can equivalently be viewed in
the following manner. First, two draws Yi, Zi are made from the distribution Di (note: while it can be
assumed that the draws are independent, the analysis works even if they are arbitrarily correlated), WLOG,
let Yi > Zi. Then we independently toss an unbiased coin Bi, if heads (i.e., bi = 1), Si = Yi and Vi = Zi
and if tails, we flip the assignment. We will see that for every draw of {yi, zi}i∈[n], in expectation over the
coin flips {Bi}i∈[n], the given algorithm gives a 1/2-competitive prophet inequality.
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Consider the sorted order on the set {x : x = yi or x = zi}. This order looks like yi1 > yi2 · · · > zj1 · · · >
zjn . Relabel this sequence as X = X1 > X2 · · · > X2n. Each Xi corresponds to some distribution index
j. Let i∗ be the smallest index in [2n] such that there exists a index j∗ < i∗ such that both Xi∗ and Xj∗

correspond to the same distribution index. Therefore, X ′ = X1, X2, · · ·Xi∗−1 are all of the form Yi1 to
Yii∗−1

. Importantly, this means that the coin flips assigning the elements of X ′ to samples or values are all
independent. The intuition behind the competitive ratio is as follows. Observe that the prophet picks the
first value in the sequence X and the algorithm picks a value (if at all one exists) that is at least larger than
the first sample in the sequence. To make our analysis easier, let us restrict the reward obtained by the
algorithm by assuming that it only gets the smallest value (if one exists) that is larger than the threshold
(i.e., the largest sample).

Note that X1 is a value with probability 1/2 (based on the associated coin flip) and is always picked
by the prophet given that it is a value. To guarantee that X1 is picked by the algorithm, X1 must be a
value and X2 a sample - this happens with probability 1/4 (using the independence of the first few coin
flips). Similarly, X2 is picked by the prophet with probability 1/4 (X1 is a sample and X2 is a value) and
picked by the algorithm with probability 1/8 (X1, X2 are values and X3 is a sample). This reasoning can be
extended all the way up to the index i∗ − 2 since all coin flips {bil}l∈[i∗−1] are independent. This happens

with probability 1
2i∗−1 . Xi∗−1 is chosen by the algorithm only when the first sample in the sequence is

Xi∗ , which in turn only happens when the first i∗ − 1 coin flips result in the corresponding Xi being set
as a value. For Xi∗ , note that the prophet picks this quantity only when the first i∗ − 1 coin flips result
in the corresponding Xi being set as a sample. Observe that the first sample as well as the first value in
the sequence both appear within the index i∗, thus we do not have to consider the possibility of either the
prophet or algorithm selecting Xj with j > i∗. Putting this together, we get the following bounds on the
rewards of the prophet RP and the algorithm RA:

E[RP ] =

(
i∗−1∑
i=1

Xi

2i

)
+

Xi∗

2i∗−1

E[RA] ≥

(
i∗−2∑
i=1

Xi

2i+1

)
+
Xi∗−1

2i∗−1

=

(
i∗−1∑
i=1

Xi

2i+1

)
+
Xi∗−1

2i∗−2

Comparing the two expressions leads to the 1/2-competitive ratio.

3.4 Comparison

Note that the algorithm AKW , for the full information setting, required some non trivial information about
the statistics of the distributions. In particular, it required us to know the expected value of the maximum
of the set composed of a single draw from each distribution. As noted by [Luc17], this algorithm is robust
to small errors in the estimation, the expected reward drops by ε if there is a 2ε- error in the estimate for
the expected value of the maximum. However, estimating this quantity still requires some knowledge of the
distributions or a good number of samples depending upon the properties of the distributions. In contrast,
the single sample algorithm AS , achieves the same bound using just one sample from each distribution.
However, it is interesting to note that the analysis of [RWW20] does not go through when we only have a
single sample of the random variable Vmax even though we only use the maximum value of the samples in
our algorithm. The analysis of AS uses these samples to explicitly reason about all possible selections by
the algorithm (and the prophet). In contrast, the analysis of AKW , the full information setting algorithm,
does not explicitly analyze which value is selected by the algorithm.
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4 Reducing Prophet Inequalities to the Secretary Problem

In this section, we present the results of [AKW14] that show how to use a certain class of algorithms for the
secretary problem to generate the same competitive ratio for the corresponding prophet inequality problem.

We say that algorithm S is an order-oblivious algorithm for the secretary problem if it satisfies the
following conditions.

1. S must behave in the following manner- S picks a threshold index k before starting the sequence
(potentially using random bits) and only observes the first k values {vi1 , vi2 · · · vik} in the sequence
(and does not accept any of these values).

2. S assumes only that the set A is a uniformly random subset of size k of the set {vi}i∈[n] of n values,
while proving the competitive ratio. Note that this is a strict subset of the conditions that are given
to the algorithm.

To illustrate these conditions, let us consider a simple order oblivious algorithm with a competitive ratio
of 1/4 for the single choice secretary problem. The algorithm observes the first k values without accepting
where k = Bin(n, 1/2), sets a threshold τ = maxl∈[k] vil and accepts any value in the second half that is
greater than the threshold. To lower bound the probability that the algorithm stops at the maximum value,
consider the two largest elements vi and vj , with vi < vj . We consider the first k elements to be a uniformly
random subset of size k. This set of k elements can be equivalently considered as tossing k independent
unbiased coins to decide whether each element vl goes into the first k elements. Thus, with probability 1/4,
vi is in the first k elements and vj is not, implying that the maximum element is chosen with probability at
least 1/4.

Theorem 3 ([AKW14]). Any α-competitive order-oblivious algorithm AS for the secretary problem in en-
vironment I = {U,J } yields a α-competitive algorithm AP for the corresponding single sample prophet
inequality problem in the same environment.

The intuition behind this result is that we can use the samples to recreate the conditions required for
the order-oblivious algorithm AS with the key observation being that samples and values are statistically
equivalent.

We now describe the algorithm AP . We construct a sequence X = X1, X2 · · ·Xn to run algorithm As on,
and show that X simultaneously satisfies the preconditions the algorithm AS requires and is similar enough
to our real sequence V for the guarantees of AS to translate into a prophet inequality.

Algorithm AP based on Order-Oblivious Algorithm for the Secretary Problem in
Environment I = {U,J }

1. (Offline) Let k be the threshold chosen by algorithm AS .

2. (Offline) Let π be a uniformly random permutation on [n]. Pass Sπ(1), Sπ(2), · · ·Sπ(k) as the
first k elements of sequence X where S = (S1, S2, · · ·Sn) is the sample set.

3. (Online) Run the algorithm AS on sequence X, which is constructed as the values Vi are
revealed.

4. (Online) As each value Vi is revealed, add Vi as the next element in sequence X if i /∈
{π(1), π(2), · · ·π(k)}, otherwise ignore Vi.

First, we observe that the accepted setA consists purely of elements in {Xk+1, Xk+2 · · ·Xn}. Additionally,
since both problems share the same feasible set system, the accepted set A is present in the superset J of
feasible sets.
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Observe that the expected reward of the prophet is E[OPT(V )]. By construction of the sequence
X, the random variables OPT(X) and OPT(V ) are statistically equivalent, implying that their expecta-
tions are equal. However, since X satisfies the conditions required by the analysis of AS , we know that
E[
∑
i∈A(X)Xi] ≥ α.E[OPT(X)]. Observe that the left hand side of the expression is exactly the expected

reward obtained by the algorithm, leading to the desired competitive ratio for AP .
The above theorem results in the following corollary.

Corollary 1. 1. For general matroid constraints, there exists a O(log log(rank))-competitive algorithm
for the single sample prophet inequality problem, based upon the secretary algorithm of Feldman et
al [FSZ14].

2. For graphic matroids, there exists a 1/8-competitive algorithm for the single sample prophet inequality
problem, based upon the secretary algorithm of Korula and Pal [KP09].

3. For transversal matroids, there exists a 1/16-competitive algorithm for the single sample prophet in-
equality problem, based upon the secretary algorithm of Dimitrov and Plaxton [DP08].

4. For laminar matroids, there exists a 1/16-competitive algorithm for the single sample prophet inequality
problem, based upon the secretary algorithm of Jaillet, Soto and Zenklusen [JSZ13].

5 1/6.75-Competitive Algorithm for Bipartite Matching

Consider the problem environment, where we have an underlying bipartite graph G = (A ∪ B,E). The set
J consists of matchings of G. In each step, we get the weight Ve on edge e, drawn from the corresponding
distribution De. First, we show the result using d2 samples for maximum degree d graphs, and then mention
how to achieve the same competitive ratio for general bipartite graphs with |E| samples. We get d2 sets of

samples S1, S2 · · ·Sd2 , where each sample set Si = {Si1, Si2, · · ·Si|E|} is a set of independent draws from the
distribution of each edge.

Arbitrarily number the edges incident on each vertex. Consider any edge e = (u, v), where e is the i-th
edge incident on u and the j-th edge incident on v. We define the index of this edge, represented by ze to
be d.i+ j. This indexing has two important properties, first that all indices are in {1, 2, · · · d2}, second that
no two edges sharing an endpoint have the same index.

For each edge, we define an associated threshold τe. Consider any vector of edge weights w = (w1, w2 · · ·we).
We know there exist efficient deterministic algorithms for maximum weight bipartite matchings. Let xe(w)
be 1 if such an algorithm include edge e in the bipartite matching on the graph G with edge weights e. We
define a threshold Te(w−e) where w−e refers to the set of weights of all edges excepting e.

Te(w−e) := inf{we : xe(we, w−e) = 1}

Intuitively, this threshold is the price of admission for edge e, if all the other edge weights are known.
Since we do not know the other edge weights in advance, we use a sample to set the actual threshold as
τe := Te(s

ze
−e). The intuition for this threshold is straightforward - the expected contribution of edge e to the

offline optimum is E[Ve ≥ Te(V−e)].Pr[xe(Ve, V−e) = 1]. Note that Pr[xe(Ve, V−e) = 1] = Pr[xe(Ve, S
ze
−e) = 1]

since Sze and V are statistically identical. Using the same reasoning, E[Ve|Ve ≥ τe] = E[Ve|Ve ≥ Te(v−e)].
We show how to use these threshold along with simple randomized selection to achieve the target com-

petitive ratio.
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Algorithm AB for selecting a bipartite matching:

1. Initialize a set of accepted elements A to φ.

2. In the e-th step, we see the value of edge e, which is Ve = ve.

a Flip a coin Be independently such that Be = 1 w.p. 1/3 and Be = 0 w.p 2/3.

b Discard edge e if Be = 0 and move to the next edge.

c If Be = 1, add edge e to A if A ∪ {e} is a matching and Ve ≥ τe.

Theorem 4. The algorithm AB is 1/6.75-competitive for the bipartite matching prophet inequality problem
on graphs with maximum degree d.

We have already seen that the contribution of any edge e to the offline optimum OPT is E[Ve|Ve ≥
τe].Pr[Ve ≥ τe]. Thus, using the linearity of expectation, it suffices to prove that the contribution of edge e
to the expected reward of the algorithm, denoted by We is at least (1/6.75).E[Ve|Ve ≥ τe].Pr[Ve ≥ τe].

Let Ce denote the event that edge e is accepted by algorithm AB . Let Ae denote the state of the set A
when value on edge e is revealed to the algorithm. We have We = E[Ve|Ce].Pr[Ce]. Let Xe be the event
that Ce = 1, Ye be the event that Ve ≥ τe and Ze be the event that Ae ∪ {e} is a matching. Clearly,
Ce = Xe ∩ Ye ∩Ze. Additionally, Xe happens with probability 1/3 and independent of the other two events
as well as the draw Ve,. Thus, we have:

We = (1/3) Pr[Ye and Ze].E[Ve|Ye and Ze]

However, Ye and Ze are not independent - this is because Ye depends upon the sample Sze , which in
turn might also affect other edges whose values are revealed before Ve, in turn affecting the probability that
A ∪ {e} is a matching.

The right lens to look at the event Ye ∩ Ze is through the following two events E1 and E2. Let edge e
have endpoints l and r. E1 is the event that no other edge incident on l is selected by AB and E2 is the
event that no other edge incident on r is selected by AB . They key property that we exploit is that E1 and
E2 are each independent of Ye as well as the draw Ve, since two edges that share an edge have thresholds set
based on different samples. Observe that the occurrence of E1 and E2 guarantee that event Ze will happen.
Thus, we get:

We ≥ (1/3) Pr[Ye and E1 and E2].E[Ve|Ye and E1 and E2]

= (1/3).P r[Ye].Pr[E1 and E2].E[Ve|Ye]
= (1/3)Pr[Ve ≥ τe].Pr[E1 and E2].E[Ve|Ve ≥ τe]

Thus, it suffices to show a bound of 4/9 on the quantity Pr[E1 and E2] to obtain the desired result.
Consider the probability space of any sample Si- we see that the total probability of selecting an edge e

as part of a maximum weight matching on the graph weighted with Si is Pr[Sie ≥ Te(Sie, Si−e)]. Additionally,
we know that the probability of selecting an edge incident on a particular vertex v is at most 1, by the
definition of a matching. Using the fact that all samples and the values are identical random variables, we
get : (Recall that e = (l, r)) ∑

e:e=(l′,r)

Pr[Ye′ ] ≤ 1

∑
e:e=(l,r′)

Pr[Ye′ ] ≤ 1
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Additionally, for any edge e′, since Ce′ = ∩Ye′ ∩Ze′ , we know that Pr[Ce′ ] ≤ Pr[Xe′ ∩ Ye′ ] = 1/3 Pr[Ye′ ].
Thus, we have: ∑

e:e=(l′,r)

Pr[Ce′ ] ≤
1

3

∑
e:e=(l,r′)

Pr[Ce′ ] ≤
1

3

Thus, we have Pr[E1],Pr[E2] ≤ 1
3 . It is not hard to show that Pr[E1|E2] ≥ Pr[E1] and thus we get

Pr[E1∩E2] ≥ 4/9, completing the proof. Note that we chose a probability of 1/3 to set Ce = 1 since x = 1/3
maximizes x(1− x)2 in [0, 1].

To modify the algorithm to use |E| samples for general bipartite graphs - we change the indexing and
just set index of edge e to be e, we still retain the property that two edges incident on the same vertex have
different indices.

6 IID Prophet Inequalities

Another variation of the prophet inequality problem is the unknown IID Prophet Inequality problem, intro-
duced and studied by [CDFS19]. Recall that in this problem, all distributions Di are identically the same
distribution D but the gambler has no knowledge of this distribution before the sequence begins.

6.1 A 1/e-comeptitive Algorithm for the Unknown IID Prophet Inequality
Problem

We see a simple reduction to the single choice secretary problem to obtain a 1/e-competitive algorithm for
the unknown IID Prophet Inequality Problem.

Theorem 5. There exists a 1/e-competitive algorithm for the unknown IID Prophet Inequality problem.

Proof. Consider any draw of values V = {v1, v2, v3, · · · vn} and any permutation π on [n]. Observe that any
permutation of the values V = {vπ(1), vπ(2, vπ(3) · · · vπ(n)} is equally likely to be observed. Thus, conditioned
on any set of n values being drawn, every permutation of this set is equally likely to be observed. Thus,
running the optimal 1/e-competitive algorithm [F+89] for the single choice secretary problem on the observed
sequence guarantees that the maximum value is selected with probability at least 1/e. This gives the desired
bound on the expected reward of the algorithm.

6.2 A 1/e + δ Upper Bound for the Unknown IID Prophet Inequality Prob-
lem [CDFS19]

More interestingly, Correa et al. [CDFS19] showed that the single choice secretary based approach outlines
above is essentially optimal, by showing that any algorithm for this problem (in a canonical form that
preserves the competitive ratio) has a “difficult” instance on which it cannot do much better than 1/e.

Before stating this result, we introduce some special notation .
We say that an algorithm for this problem, referred to a as a stopping rule r (since in the single choice

problem, we either stop and accept a revealed value or we continue), has stopping time τ if it stops at index
τ . To model the fact that the underlying distribution D is not known to the gambler, we describe r as a
collection of functions ri : Ri+ → [0, 1] where p = ri(v1, v2, · · · vi) is the probability with which the stopping
rule accepts vi at the i-th step, conditioned upon seeing values V1 = v1, V2 = v2 · · · , Vi = vi and not having
stopped at any of the steps from 1 to i−1. Note that implicitly, the functions ri also depend on n. Wherever
we wish to make this clear, we explicitly refer to stopping rules as a function of n, i.e., as r(n).
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Theorem 6 ( [CDFS19]). For any δ > 0, there exists N ∈ N such that for all n > N and any stopping
rule r(n) with stopping time τ , there exists a distribution F , unknown to the stopping rule, such that r(n)
has competitive ratio upper bounded by (1/e + δ) for the (unknown) IID prophet inequality problem with
distribution F ,i.e.,

E[Vτ ] ≤ (1/e+ δ).Vmax

Before outlining the proof of this theorem, we observe that the same hardness result can also be shown to
hold for the relaxed version of the problem where the algorithm gets to see o(n) samples before the sequence
begins. To provide some intuition, assume that some stopping rule r can do better than 1/e+δ in this relaxed
setting. Now, for the original unkown IID prophet inequality problem, consider the following algorithm -
there is no stopping at the first n′ values, these are considered to be “samples’ and we run the algorithm r
for the relaxed problem on the remaining n−n′- long sequence. Let us set n′ = o(n), thus n−n′ = (1−o(1)n
and the expected maximum value in this shortened sequence is at least (1− o(1)n the expected maximum of
the original sequence. Thus, we show the existence of a stopping rule with competitive ratio (1/eδ).(1− o(1)
for the unknown IID prophet inequality problem, contradicting the above theorem.

The proof of Theorem 6 is based on two ideas. The first idea is that 1/e is the best possible competitive
ratio for the single choice secretary problem. The second idea is that, for any stopping rule (modified to
a canonical form), there is a specific distribution for which this rule is “value-oblivious”,i.e., it cares only
about the relative comparisons between the observed values and not the values themselves. Additionally, if
the largest realized value dominates all the other values, then this stopping rule essentially behaves like an
algorithm for the single choice secretary problem. The following lemma formalizes this intuition.

Definition 1. Let ε > 0, V ⊂ N. We say that a stopping rule r(n) is value-oblivious on V if for all i ∈ [n],
there exists {qi}i∈[n] such that for all distinct v1, v2 · · · vi ∈ V with vi > maxj∈[i−1] vj, we have the property
that ri(v1, v2 · · · vi) ∈ [qi − ε, qi + ε].

Lemma 1. Consider any ε > 0, given a stopping rule r′(n) with competitive ratio α, then there exists a
stopping rule r(n) with competitive ratio α and an infinite set V ⊂ N such that r(n) is value-oblivious on
the set V .

Given this lemma, we see a proof of Theorem 6.
Let ε = 1/n2. Consider any stopping rule r(b) with competitive ratio α. By Lemma 1, we know there

exists a stopping rule r′(b) with competitive ratio α and an infinite set V ⊂ N such that r(n) is value-oblivious
on V .

We build the distribution F in the following manner. Since V is an infinite set, we can assume there are
natural numbers s1, s2, · · · sn3 ,m such that m ≥ n3 maxi si. We set probability masses on these elements as
follows - for all i ∈ [n3]. The probability mass set by F on eachc Vi is defined as follows:

Vi =



s1, with probability 1/n3(1− 1/n2)

s2, with probability 1/n3(1− 1/n2)
...

sn3 , with probability 1/n3(1− 1/n2)

m, with probability 1/n2

We observe some immediate consequences of this construction.

1. With high probability, V1, V2 · · ·Vn are all distinct.

2. The expectation of Vmax is dominated by the expected contribution of the maximum element, i.e.,
E[Vmax] ≥ m

n .

3. The expectation of Vτ (the reward of the stopping rule) is dominated by the contribution of the event
that m appears among V1, V2 · · ·Vn and that V1, V2 · · ·Vn are distinct, and additionally the contribution
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of this event is itself dominated by the possibility of the algorithm stopping at m,i.e., if τ is the stopping
time, then

E[Vτ ] ≤ (1/n).Pr[Vτ = m|Vmax = m and V1, V2 · · ·Vn are distinct].m+ o(1/n).m

Let p1 := Pr[Vτ = m|Vmax = m and V1, V2 · · ·Vn are distinct]
We only need an upper bound of 1/e + o(1) on the probability p1 to obtain the desired bound on the

competitive ratio α. Recall that our stopping rule r′(n) is ε-value oblivious (since all values observed are
distinct and restricted to the set V ). Additionally, since we are only interested in the probability of getting
the maximum value, we can assume that r′(n) never accepts a value unless it is the largest value seen so far,
without any loss of generality.

Consider any stopping rule r′′(n) that is 0 value-oblivious on the set V , with stopping time τ ′′. If
Pr[Vτ ′′ = m|Vmax = m and V1, V2 · · ·Vn are distinct] > 1/e, we can use r′′(n) as an algorithm for the
secretary problem, contradicting 1/e being the optimal competitive ratio for that problem.

Now, we see some intuition as to why we can obtain a similar bound on the probability p1 even
though r′(n) is only ε value-oblivious. For all i ∈ [n], we know that for distinct v1, v2 · · · vi ∈ V with
vi > maxj∈[i−1] vj , we have the property that r′i(v1, v2 · · · vi) ∈ [qi − ε, qi + ε]. Construct a 0 value-oblivious
stopping rule r′′(n) with stopping time τ ′′ by setting r′′i (v1, v2 · · · vi) = qi. Through a coupling argument
and the use of the union bound, it can be seen that

Pr[Vτ = m|Vmax = m and V1, V2 · · ·Vn are distinct] ≤ Pr[Vτ ′′ = m|Vmax = m and V1, V2 · · ·Vn are distinct] + n.ε

Since n.ε = 1/n = o(1), we get the desired result.

6.2.1 Proof of Lemma 1

The heart of the hardness result for the unknown IID prophet inequality problem lies in Lemma 1, which
shows that any stopping rule in a canonical form cannot make use of the actual observed values when they
are drawn from a suitable infinite set. This is the essential ingredient that allows us to force the stopping
rule to use any more information than an algorithm for the single choice secretary problem.

First, we set up a canonical form for stopping rules and argue why converting any stopping rule into this
canonical form preserves the competitive ratio.

Definition 2. A stopping rule r(n) is said to be order-oblivious if for all i ∈ [n], any distinct sequence
v1, v2, ...vi and any permutation π of [i− 1], ri(v1, v2, · · · vi) = ri(vπ(1), vπ(2), · · · vπ(n−1).

Lemma 2. If there exists a stopping rule r(n) with competitive ratio α, then there exists an order-oblivious
stopping rule r′(n) with the same competitive ratio and such that for all i ∈ [n] r′(n) never selects Vi if r(n)
never selects Vi.

Proof Sketch of Lemma 2 First, we describe how to construct r′(n) given a stopping rule r(n).
For every i ∈ [n], let ∼i be the equivalence relation on Ri+ such that (v1, v2 · · · vn) ∼i (w1, w2 · · ·wn) if
w1, w2 · · ·wi−1 is a permutation of v1, v2 · · · vi−1 and vi = wi. We say that a stopping rule r arrives at index
i through (v1, v2 · · · vn) if V1 = s1, V2 = s2 · · ·Vi = si, (s1, s2 · · · si) ∼i (v1, v2, · · · vn) and r does not stop at
any index j ∈ [i− 1].

r′i(v1, v2, · · · vn) := Pr[r stops at index i |r arrives at index i through (v1, v2, · · · vn)∼i
]

By definition, r′(n) is order-oblivious. Additionally, r′(n) never selects Vi if r(n) never selects Vi. We will
give some intuition as to why r′(n) has the same competitive ratio as r(n). We can think of r′(n) as uniformly
distributing the probability of r(n) accepting vi, having arrived at index i through (v1, v2, · · · vn)∼i

over all
the different sequences in this equivalence class. We can show by induction over i that for all i ∈ [n], we
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have Pr[r arrives at index i through (v1, v2, · · · vn)∼i ] = Pr[r′ arrives at index i through (v1, v2, · · · vn)∼i ].
Let r(n) and r′(n) have stopping times τ and τ ′ respectively. Consider the contribution of the event that
vi is accepted after arriving at index i through (v1, v2, · · · vn)∼i

. It is not hard to show that the expected
contribution of this event is the same for both stopping rules.

Thus, starting with r(n), we now have a order-oblivious stopping rule r′(n).
Now, the final step, which is proving the value-obliviousness of r′(n), can be done index by index -

a stopping rule is said to be (ε, i) value-oblivious if it is value-oblivious on some infinite set Ki upto the
i-th step. We prove that r′(n) is value-oblivious by induction. Additionally, the corresponding infinite sets
K1,K2 · · ·Kn will have the property that K1 ⊇ K2 · · · ⊇ Kn.

For the base case, we consider i = 0, and we know that every stopping rule trivially always continues to
the next value, with V0 = N.

To do the induction step, we call upon the infinite hypergraph version of Ramsay’s Theorem [Ram30].

Theorem 7 ( [Ram30]). Let H be a d-uniform infinite complete hypergraph whose edges coloured with c
colours. Then, H must have a monochromatic d-uniform infinite complete sub-hypergraph.

Consider the induction hypothesis for index i. We have assumed there exists infinite set Ki−1 ⊆ N
such that r′(n) is (ε, i− 1) value-oblivious on Ki−1. Consider the i-uniform infinite complete hypergraph H
with vertex set Ki−1. We partition the unit interval [0, 1] into d 1

2εe intervals - [0, 2ε), [2ε, 4ε) · · · [1 − 2ε, 1).
We associate a colour Ci with each of these intervals, in total we have c = d 1

2εe colours. Consider any
hyperedge (v1, v2, · · · vi) where vi ≥ maxj∈[i−1] vj . We know that there exists a unique natural number
u such that r′i(v1, v2 · · · vi) ∈ [(2u − 1)ε − ε, (2u − 1)ε + ε) - we colour this hyperedge with the colour
corresponding to this interval. Using Ramsay’s Theorem(Theorem 7), we know there exists a monochromatic
d-uniform infinite complete sub-hypergraph of H. Call the vertices of this hypergraph Ki. Observe that
Ki ⊆ Ki−1, Ki is an infinite set, and since all hyperedges have the same colour - corresponding to some
interval [(2u − 1)ε − ε, (2u − 1)ε + ε), we conclude that r′(n) is (ε, i) value-oblivious on Ki, successfully
extending the induction hypothesis.

6.3 Beating 1/e with O(n) Samples

Although we cannot expect to do better than a competitive ratio of 1/e with o(n− 1) samples, we already
have some reason to believe that this state of affairs changes when the gambler has access to O(n) samples.
In particular, with exactly n samples, the gambler can run the algorithm of Rubinstein et al. [RWW20] to
achieve a competitive ratio of 1/2.

First, we see a simple algorithm that achieves a 1 − 1/e-competitive ratio when the gambler is given
access to n(n− 1) samples. Then, we provide some intuition as to how the same result can be achieved with
n− 1 samples.

Consider the algorithm that takes samples {Si = si}n(n−1)i=1 as input.

1− 1/e Algorithm An(n−1) for IID Prophet Inequality with n(n− 1) Samples

1. Let the samples be {Si = si}n(n−1)i=1 . For each i ∈ [n], allocate a distinct set of n−1 samples,
and let τi be the maximum value of this set.

2. Accept the i-th value if Vi > τi, let τ be the stopping time if Vi is accepted.

Conditioned upon the algorithm reaching index i, we make two key observations -

1. The probability of accepting Vi is 1
n , since Vi has to be the maximum of n independent draws from

the same distribution. Additionally, this event is independent of the probability of accepting value
Vj conditioned upon reaching Vj for j 6= i- this is because we use a disjoint set of samples to set
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the threshold for each index. Thus, the unconditional probability of reaching Vj is
(
1− 1

n

)j−1
for all

j ∈ [n− 1].

2. The expected value of Vi conditioned upon the algorithm accepting Vi is E[Vi|Vi ≥ τi] = E[Vmax], since
Vi is accepted only if it is the maximum of n independent draws from the same distribution.

Thus, we can write the expected reward of the algorithm as:

E[Vτ ] =

n∑
i=1

Pr[ An(n−1) reaches value Vi ].Pr[ An(n−1) accepts value Vi | An(n−1) reaches value Vi ].E[Vi|Vi ≥ τi]

=

n∑
i=1

(
1− 1

n

)i−1
.
1

n
.E[Vmax]

=

(
1−

(
1− 1

n

)n)
E[Vmax]

≥
(

1− 1

e

)
E[Vmax]

Now consider the IID Prophet problem where the gambler has n − 1 samples. The previous algorithm
required n − 1 fresh samples at the time where it arrived at the i-th value. The modification that Correa
et al. [CDFS19] is to pick a random subset of size n− 1 from {S1, S2, · · ·Sn−1, V1, V2, · · ·Vi−1} and use the
maximum value in this set as a threshold on arriving at value Vi.

The following lemma shows that this modification preserves the conditions that we use to analyze the
algorithm An(n−1).

Lemma 3. Let Ui := {S1, S2, · · ·Sn−1, V1, V2, · · ·Vi−1}. Conditioned upon the modified algorithm arriving
at value Vi, the distribution of the set Ui is identical to n + i − 2 independent draws from the underlying
distribution D.

This lemma is not at all obvious, given that the algorithm arriving at this step (rejecting the first i− 1
values) seems to implicitly induce some correlations between the samples and values in the set Ui. We note
that the proof is via induction on i.

With this lemma, we can still preserve the key independence properties that allowed us to argue the
1− 1/e-competitive ratio guarantee for algorithm An(n−1).

Theorem 8 ([CDFS19]). There exists a 1−1/e-competitive algorithm for the IID Prophet Inequality problem
with the gambler given access to n− 1 samples.

We do not provide a proof of the above lemma or the resulting theorem in this report.
We note that this result may potentially lead to an interesting corollary about the unknown IID Prophet

Inequality problem when the underlying distribution D has some particular properties.
Consider the following algorithm for the unknown IID Prophet problem - ignore the first half of the

sequence, and use the first n− 1 values as samples for the second half of the sequence. Let Kl represent the
random variable that represents the maximum of l independent draws from D. We know that for all positive

support distributions,
E[Kn/2]

E[Kn]
≥ 1/2. This trivially gives our algorithm a lower bound of (1− 1/e)/2 ≈ 0.31.

However,
E[Kn/2]

E[Kn]
≥ 1/2 is only tight for certain distributions, for eg., the class of distributions used in the

hardness result where the expectation of a single draw depended heavily upon the appearance of a single
dominant value. For distributions where this ratio approaches 1 as n → ∞, the unknown IID prophet
problem can be solved with a competitive ratio of (1−1/e)− ε for large n, significantly improving upon 1/e.
This property is for instance true for the uniform distribution on [0, 1], where E[Kl] = l

l+1 .
Finally, we briefly discuss closing the gap to 0.745v− ε competitive ratio using Oε(n) samples. The algo-

rithm of Rubinstein et al. [RWW20] for this problem builds upon the algorithm of Correa et al. [CFH+17]
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for the full information version of the IID Prophet problem. They first show that the statistical informa-
tion about D used by the algorithm of Correa et al. [CFH+17] can be approximately constructed using
Oε(n) samples. Then, they show that this algorithm in [CFH+17] is sufficiently robust to still achieve the
same competitive ratio (upto a small additive loss) using the approximated statistics about the underlying
distribution D.

7 Future Directions and Open Problems

A significant open problem is that of finding a constant factor competitive algorithm for the single sample
matroid prophet problem. For the k-choice prophet problem, it would be interesting to nail down an exact,
rather than an asymptotic competitive factor, particularly for small k. For the IID prophet problem, we
would like to know the limits of what competitive factor can be achieved with exactly n−1 samples. Another
closely related problem is to identify classes of distributions for which the hardness result (Theorem 6) can
be bypassed to achieve better than 1/e competitive factors.
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